If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-3t-23=0
a = 4.9; b = -3; c = -23;
Δ = b2-4ac
Δ = -32-4·4.9·(-23)
Δ = 459.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{459.8}}{2*4.9}=\frac{3-\sqrt{459.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{459.8}}{2*4.9}=\frac{3+\sqrt{459.8}}{9.8} $
| 3/x-1+4=19/x-1 | | 4^(2x)-2^(6x-6)=0 | | 8x+2(6x-93)=21 | | y^2=-25 | | 3x+3(3x-87)=21 | | 2(w-6)-4w=-32 | | 1/2n+55=125 | | 437=x^2+50x | | 8x+3(6x-93)=21 | | X+4/14=5/7+x-3/4 | | 4.4+1.4n=0.62 | | -4v+8=-6(v+2) | | 2.01-6=-0.15c+6.96 | | 7-1x0+3÷3=6 | | 56/4+15y=14 | | 2(2x-7)-4=2(x-4)-6 | | 5x+12=-2 | | 8x+3(6x-93)=44 | | 3u-16=5(u-6) | | (2x+1)(x-4)+13=2x²-10x | | 4(m-7)=3 | | 1/4(-x+2)+4=4(2x+4) | | 9(x-1)=4x+16 | | 12-7y/6=2y+1/9 | | X-9/x=2/5 | | f(0)=2,f(2)=4,f(-1)=7 | | 5x+7=-8+3x+23 | | X^2+16z+44=0 | | x2−9x=0 | | 7.26x-3.38=18.4 | | 5(n+1)/4=10 | | 3(4-3x)=2(4x+5) |